III Всероссийская научная конференция с международным участием «НАУЧНЫЕ ОСНОВЫ УСТОЙЧИВОГО УПРАВЛЕНИЯ ЛЕСАМИ» (Россия, г. Москва, 30 октября-1 ноября 2018 г.)

ЭМИССИЯ ДИОКСИДА УГЛЕРОДА С ПОВЕРХНОСТИ ПОЧВЫ СРЕДНЕТАЕЖНОГО СОСНЯКА БРУСНИЧНО-ЛИШАЙНИКОВОГО

Осипов Андрей Федорович Институт биологии Коми НЦ УрО РАН

osipov@ib.komisc.ru

a.f.osipoff@gmail.com

Работа выполнена при поддержке Комплексной программы УрО РАН № 18-4-4-29 «Зональные закономерности бюджета углерода в лиственно-хвойных экосистемах европейского Северо-Востока».

Цель

дать оценку эмиссии диоксида углерода с поверхности подзола иллювиально-железистого сосняка бруснично-лишайникового в течение вегетационных периодов 2014 2017 гг. в зависимости от погодных условий.

Исследования проведены в сосняке бруснично-лишайниковом, произрастающем на территории Чернамского (62°02′04.1″ с.ш., 50°28′33.7″ в.д.) лесного стационара Института биологии Коми НЦ УрО РАН.

Состав древостоя -10С ед. Б; Густота древостоя — 2533 экз. /га; Средний возраст – 84 года; Сумма площадей сечения $-32 \text{ м}^2/\text{га}$; Запас древесины — $246 \text{ м}^3/\text{га}$; Средний диаметр – 12 см; Средняя высота – 14 м. Напочвенный покров: Мохово-лишайниковый ярус образован зелеными мхами Pleurozium schreberi, Dicranum polysetum и лишайниками рода Cladonia. Травяно-кустарничковый ярус образуют брусника, черника.

Почва подзол иллювиально-железистый, песчаная. Мощность лесной подстилки 1-3 см.

Эмиссию CO2 с поверхности почвы измеряли при помощи инфракрасного газоанализатора LI COR 8100 с почвенной камерой 20 см с мая по октябрь 2014—2017 гг. один-два раза в месяц.

Температуру почвы регистрировали датчиком входящим в комплектацию прибора; Влажность лесной подстилки и почвы на глубинах 5 – 10 и 10 – 15 см оценивали весовым методом

Для характеристики погодных условий в 2014—2015 гг. использовали данные Коми ЦГМС (Агрометеорологический бюллетень..., 2014, 2015), а в 2016—2017 гг. — функцию "Архив погоды" на сайте "Расписание погоды" (www.rp5.ru) для метеостанции "Сыктывкар", расположенной в 40 км на юго-восток от участка исследований.

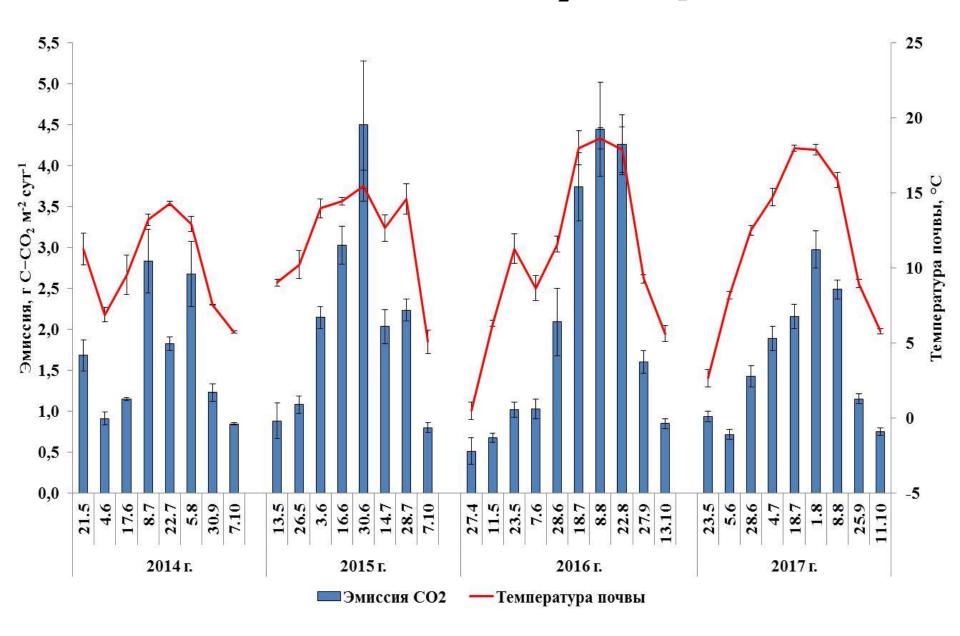
Количество углерода, выделяемого с поверхности почвы в виде CO_2 , рассчитывали по уравнению:

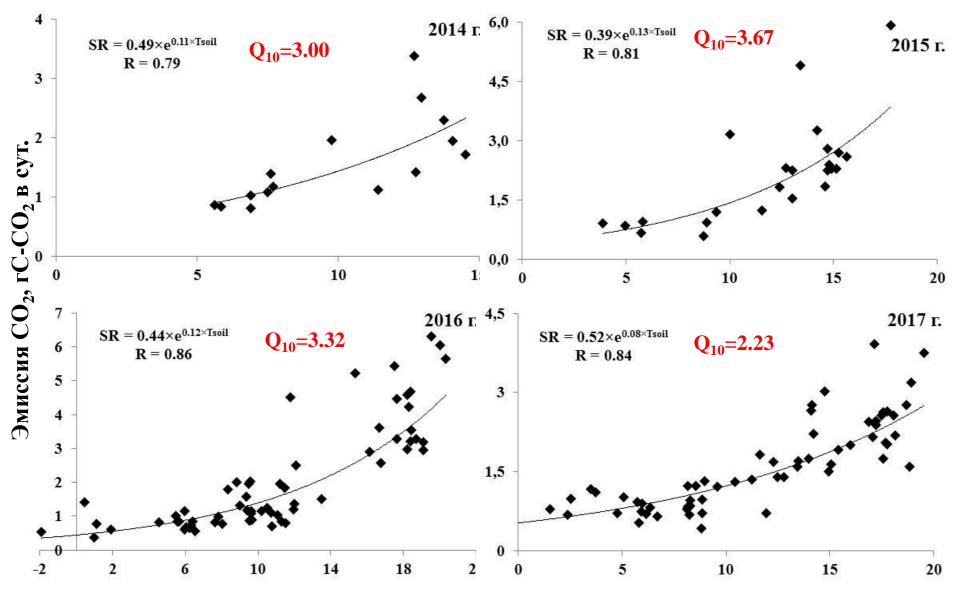
$$SR=SR_{10}\times Q_{10}^{((Ts-10)/10)}(1)$$

где, SR — эмиссия CO_2 , $rC/m^2/сут$., SR_{10} — референтное дыхание при 10 °C, Q_{10} — температурный коэффициент, T_s — температура почвы на глубине 10 см.

Температурный коэффициент Q_{10} определяли по формуле:

$$Q_{10} = \exp^{(10a)}(2)$$

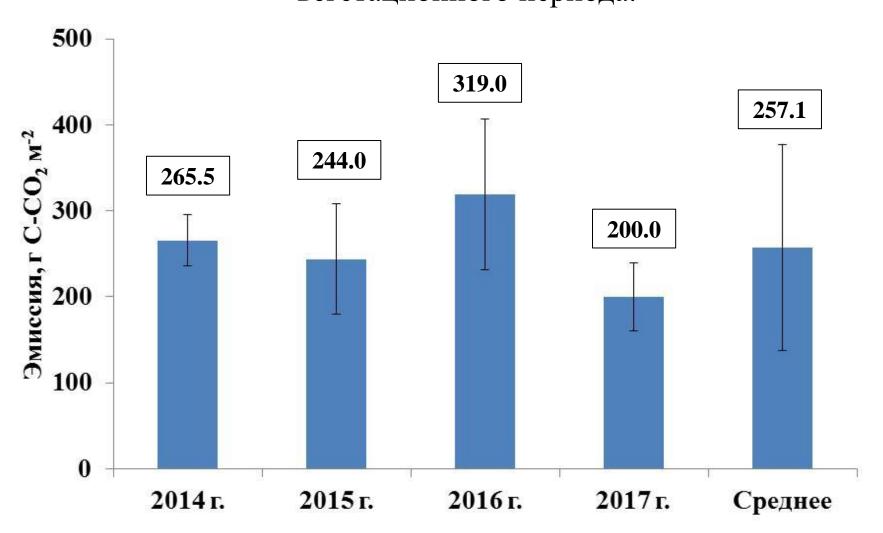

где, а – коэффициент уравнения зависимости скорости потока CO2 от температуры почвы


Оценку потерь $C-CO_2$ с поверхности почвы в 2015-2017 гг. выполняли по уравнению 1 и данным непрерывных измерений температуры почвы на глубине 10 см регистраторами НОВО U-12, с последующим суммированием среднесуточных значений с 1 мая по 30 сентября независимо от даты перехода среднесуточной температуры воздуха через +5 °C в сторону повышения/понижения.

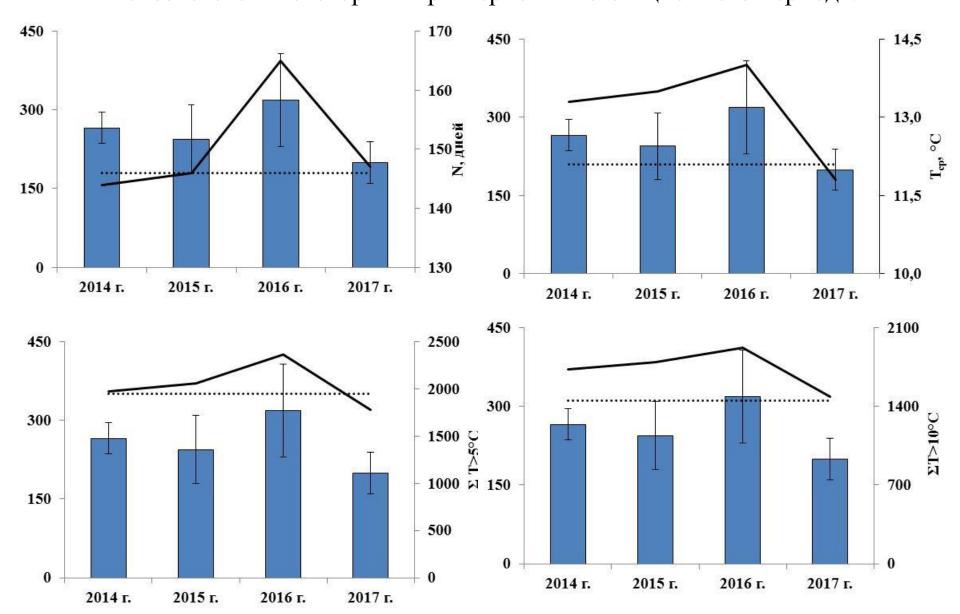
Краткая характеристика погодных условий вегетационных периодов в годы исследований

Параметр	2014 г.	2015 г.	2016 г.	2017 г.
Длительность вегетационного периода, дней	144	146	165	147
T _{air} , °C	13.3 (+1.1)	13.5 (1.3)	14.0 (1.8)	11.8 (-0.4)
$\Sigma > 5^{\circ}C$	1976	2060	2364	1775
$\Sigma > 10^{\circ} \text{C}$	1728	1796	1924	1489
T _{soil} на 10 см		10.4	11.3	11.2
Количество осадков, мм	361 (112%)	299 (93%)	445 (133%)	399 (124%)

Сезонная динамика эмиссии СО₂ с поверхности почвы



Температура почвы, °С


Взаимосвязь между влажностью почвы и эмиссией ${\rm CO_2}$ с поверхности подзола иллювиально-железистого.

Год Горизонт	2014 г.	2015 г.	2016 г.	2017 г.
Лесная подстилка	0.06 (0.83)	0.20 (0.39)	0.13 (0.33)	0.11 (0.41)
Глубина 5 – 10 см	0.16 (0.56)	0.28 (0.22)	0.33(0.01)	0.03 (0.79)
Глубина 10 – 15 см	0.25 (0.36)	0.43 (0.06)	0.22 (0.11)	0.31 (0.01)

Вынос углерода в виде CO_2 с поверхности подзола иллювиальножелезистого сосняка бруснично-лишайникового в течение вегетационного периода.

Соотношение выноса углерода в виде CO_2 с поверхности подзола иллювиальножелезистого и некоторых характеристик вегетационного периода.

Мы проанализировали характеристики межгодовых различий метеорологических характеристик для вегетационных периодов 2014-2017 гг. по метеостанции «Сыктывкар». Для иллювиально-железистого подзола сосняка брусничнолишайникового установлена тесная положительная (R=0.79-0.86) взаимосвязь температуры почвы и эмиссии СО₂ с ее поверхности, тогда как корреляция между выделением диоксида углерода и влажностью почвы неоднозначна. Коэффициент Q_{10} варьировал от 2.23 до 3.67 с более высоким значением в 2015 г., когда отмечалось меньшее количество осадков. Скорость потока диоксида углерода в течение всех сезонов закономерно следует за ходом температуры воздуха и почвы, с более высокими значениями в конце июля – начале августа. Сочетание достаточного количества тепла и влаги в почве приводит к дополнительным пикам выделения СО₂. Показано, что более высокие межгодовые вариации интенсивности дыхания почвы наблюдаются в мае и июне, что связано со слабым прогреванием почвенного профиля. Рассчитано, что с поверхности подзола иллювиально-железистого в течение вегетации выделяется от 200 до 319 г С м⁻² с более высоким значением в более теплый 2016 г. Сопоставив полученные литературными и собственными данными исследований, проведенными в среднетаежных сосняках, мы считаем, что в зоне избыточного увлажнения жаркое лето будет способствовать более интенсивному дыханию лесных почв, в отличие от сообществ, развитых на почвах в зоне достаточного и недостаточного увлажнения.

