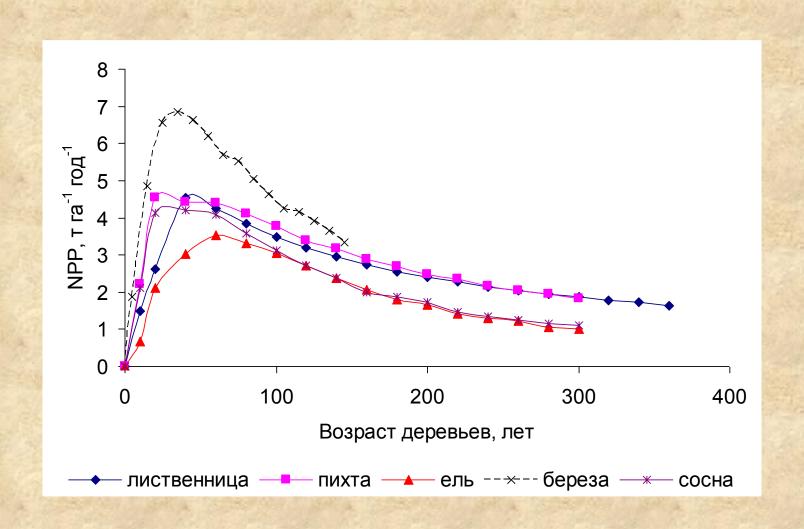
Вспышки массового размножения лесных насекомых: необходимые и достаточные условия устойчивого управления

Суховольский В.Г. (ИЛ СО РАН), Ковалев А.В. (ФИЦ КНЦ СО РАН), Тарасова О.В. (СФУ), Томилин Ф.Н. (ИФ СО РАН) Иванова Ю.Д. (ИБФ СО РАН)

Повреждения лесов насекомыми

Площади повреждения лесов насекомыми варьируют в разные годы в пределах от 10 до 24% общей площади повреждения лесов.


Площадь очагов насекомых в 2020 г. – около 3 млн.га леса.

Процентная доля древостоев со слабым повреждением деревьев составила ~50%, с умеренным повреждением — 35% и с сильным повреждением деревьев — 15%.

В 2020 году вредители "самоликвидировались" на площади в 549 тысяч гектаров. Однако еще на 175 тысячи гектаров леса их пришлось уничтожать людям.

Ущерб от воздействия насекомых

Упущенная выгода: потери ЧПП

Энергетический баланс потребления корма насекомыми в ходе вспышки (в расчете на 1 т хвои)

Первый этап трансформации хвои: расчеты баланса по (Тарасова и др., 2015):

- экскременты 100 кг/т хвои
- энергетические затраты на подготовку корма 440 кг/т хвои
- метаболические затраты (дыхание) 380 кг/т хвои
- масса особей: 80 кг/т хвои

Итого: 100+440+380+80 = 1000 кг/т хвои

Из этого в атмосферу: 440+380 = 820 кг/т хвои

в пересчете на чистый углерод: ≈ 400 кг/т хвои

Масса хвои на 1 га — 3.5 - 4 т. Итого с 1 га будет выделено в атмосферу примерно 1.5 т чистого углерода

~1.5 млн т С

выброшено в атмосферу в ходе вспышек массового размножения на территории России в 2020 г.

Упущенная выгода от недодепонирования – 3.1 млн.т

Вторичный энергетический баланс насаждения (в расчете на 1 га)

Мертвая древесина: ≈ 140 т

Трупы насекомых: 250 кг

Экскременты как удобрение: ≈ 300 кг

Вторичные процессы:

- потребление камбия ксилофагами = ???
- -пожары
- ветровалы и гниение
- компенсация упущенных выгод от ЧПП: рост трав (например, кипрея) до 1.5 т/га год

Задача лесоэнтомологического мониторинга: заблаговременно (хотя бы за 2 — 3 года до начала вспышки) выявить территории, где возможна вспышка, и именно там вести дальнейший мониторинг

Индикаторы рисков возникновения вспышек

Необходимое, но недостаточное условие 1: малое значение ГТК (сухая и теплая погода) за год или в год вспышки;

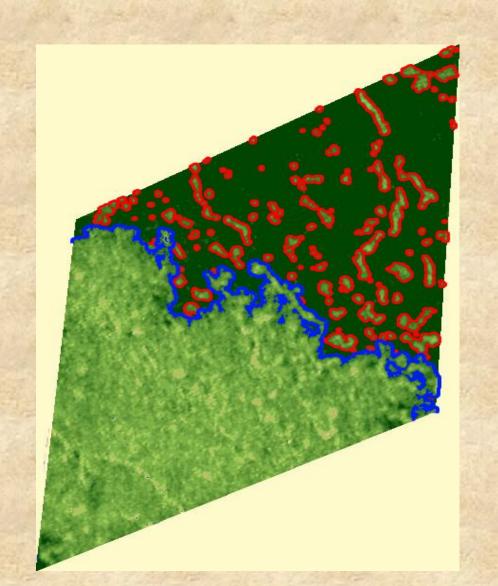
Необходимое, но недостаточное условие 2: ландшафтная приуроченность первичного очага вспышки;

Необходимое, но недостаточное условие 3: состояние кормового ресурса (низкие «цены» подготовки корма и его усвоения);

Необходимое, но недостаточное условие 4: плотность популяции, близкая к критической, или высокая восприимчивость для вида к воздействию внешних модифицирующих факторов.

Возможности измерения необходимых условий развития вспышек на гигантских таежных территориях

- 1. погода: возможны дистанционные непрерывные измерения температуры на всей территории, с измерениями количества осадков есть проблемы.
- 2. Ландшафтная структура территории: с помощью цифровых трехмерных карт рельефа можно выделить зоны риска заблаговременно.
- 3. Потерю устойчивости деревьев можно заблаговременно оценить дистанционно (на эту тему здесь будет доклад А.В.Ковалева).


Связь между свойствами очага массового размножения и его границ: голографический принцип

Голографический принцип: свойства очага массового размножения кодируются свойствами его границы.

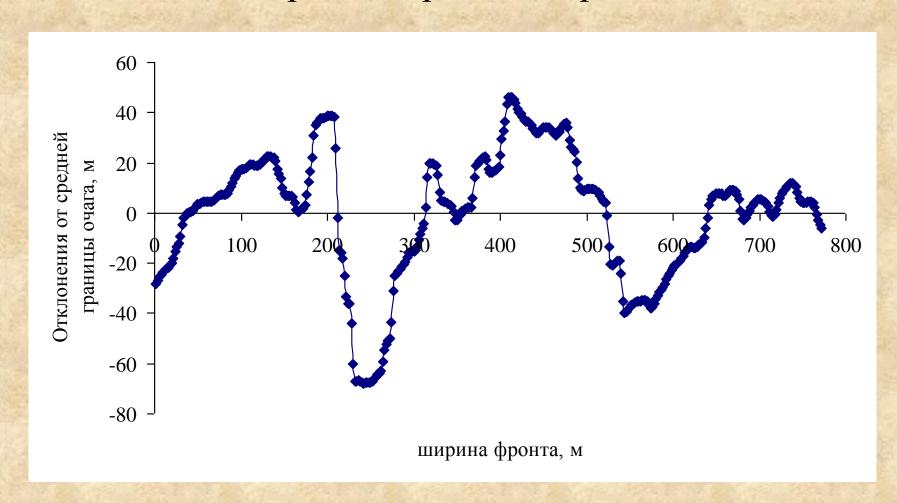
Свойства очага: численность насекомых; состояние особей, состояние кормовых растений, миграционная активность насекомых, площадь повреждений.

Свойства границы очага: фрактальная размерность границы и ее динамика, lattice animals

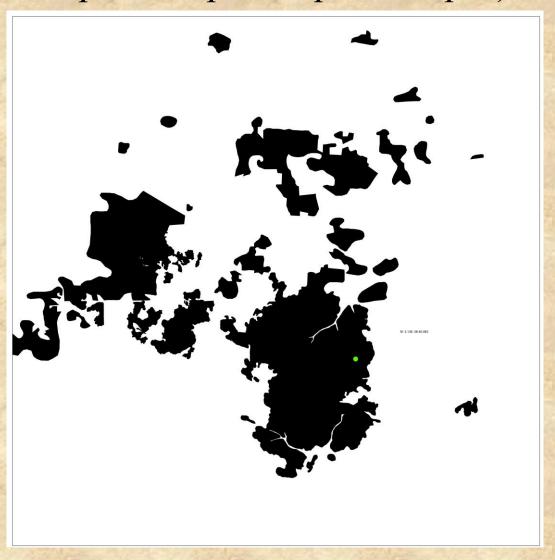
Граница очага массового размножения сибирского шелкопряда и lattice animals

Модель «вязких пальцев» для описания развития очага массового размножения

$$U(x,y) = -\frac{b^2}{12\eta} \nabla p(x,y)$$

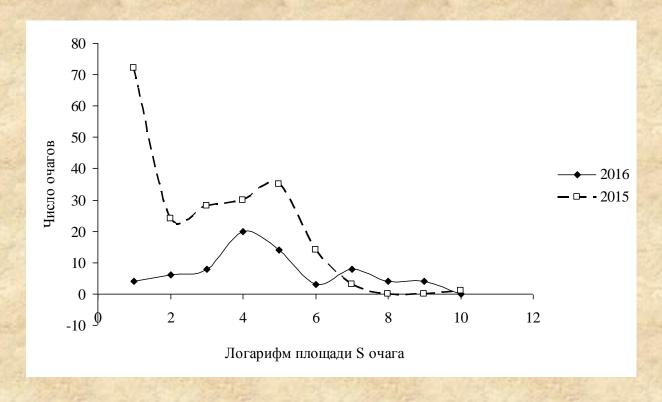

где U(x, y) — скорость движения фронта; η — «вязкость» среды; p(x, y) — «давление» популяции на насаждение; b — константа. Показатель «вязкости» может характеризовать величину, пропорциональную времени, необходимому для освоения кормового растения в очаге и вне его (если устойчивость кормового растения к насекомым велика, то время освоения большое, если устойчивость мала, то и время освоения мало), «давление» — отношение плотностей насекомых в очаге и вне его.

При большой «вязкости» и малом давлении («спящий» очаг) однократное измерение формы очага будет характеризоваться фрактальным размером границы очага, близким к 1, и отсутствием «вязких пальцев».

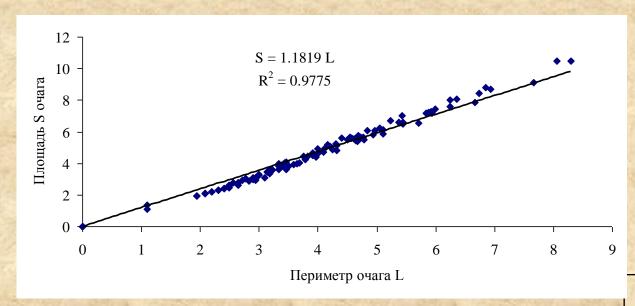

При малой вязкости и высоком давлении (агрессивная форма вредителя) фрактальная размерность границы раздела будет близка к 2 и эта граница будет иметь большое число выступов — «пальцев». Когда более «вязкая» среда толкает менее «вязкую», граница раздела сред устойчива.

В противном случае возмущение будет неустойчивым и амплитуда возмущения будет расти со временем.

«вязкие пальцы» на границе очага сибирского шелкопряда в Ирбейском районе



Фрактальная структура очагов массового размножения сибирского шелкопряда (Енисейский район Красноярского края)



Как выглядит распределение «решеточных зверей» в макроочаге массового размножения насекомых?

Наблюдаемый очаг такого вредителя, как сибирского шелкопряда, несвязен и состоит из большого числа (свыше 200) микроочагов (Lattice animals) с разной площадью повреждений. На рисунке приведены функции распределения микроочагов по площадям в ходе вспышки массового размножения вредителя на территории Енисейского района Красноярского края в 2015 и 2016 гг.

Оценка фрактальной размерности D «решеточных зверей» (микроочагов)

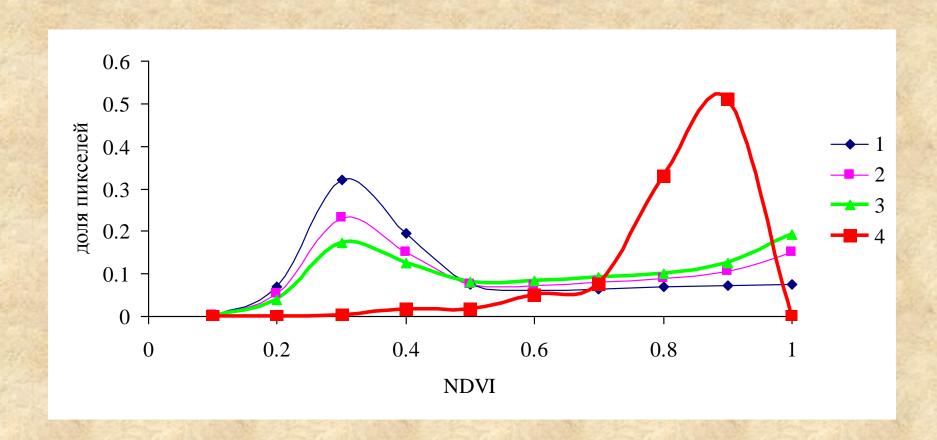
S=aL

пробная площадь	D=2/a
2015-1	1.80
2016-2	1.69
2016-3	1.64

При фрактальной размерности границы очага, существенно большей 1, эта граница будет иметь большое число «пальцев» - выступов, что характерно для очага агрессивного вида в неоднородном по устойчивости деревьев древостое.

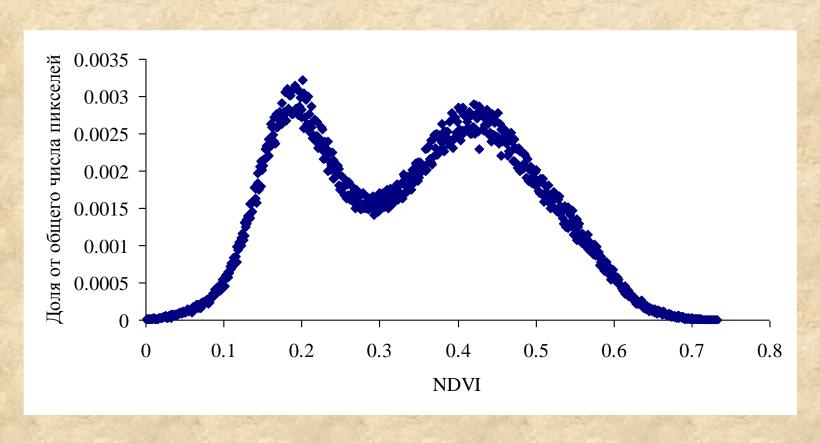
Очаги с малой площадью, характеризуемые отсутствием «вязких пальцев» на их границах, можно рассматривать как «спящие» и риск расширения их невелик.

Что делать?

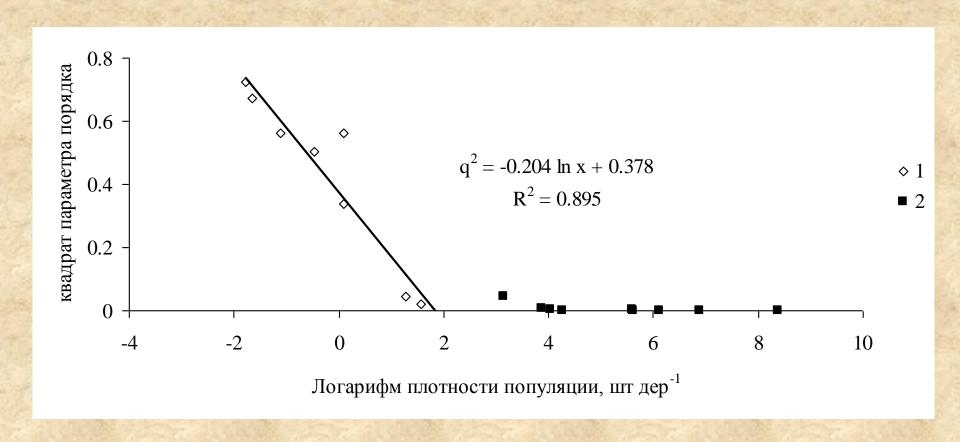

Оценка и прогноз динамики площадей неустойчивых или уже поврежденных насаждений открывает возможность расчета моделей динамики развития очагов, характеристик как насекомых-вредителей, так и состояние кормовых древесных растений.

Для оценки параметров модели перспективно использование данных дистанционного зондирования.

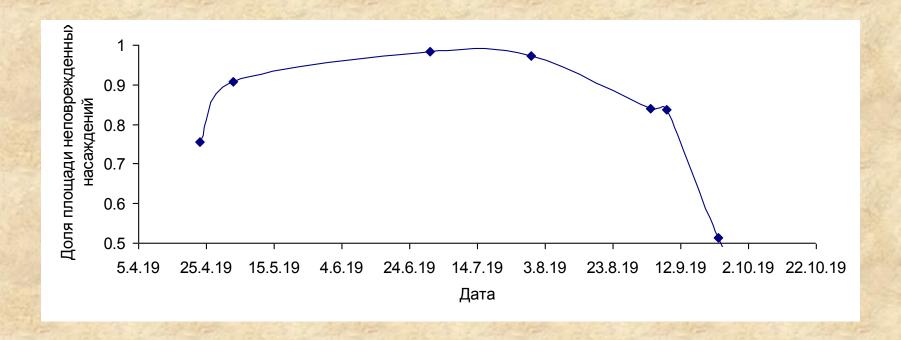
Неповрежденное насаждение (данные со спутника Sentinel-2)



Повреждения деревьев (распределение по пикселям NDVI)



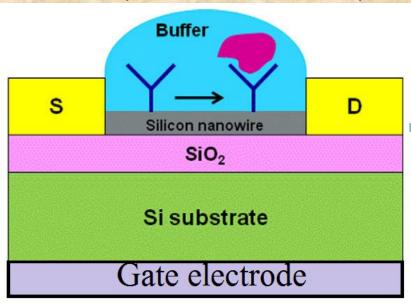
Повреждения насаждения сибирским шелкопрядом (Ирбейский район Красноярского края, 03.09.2019).


Дистанционное зондирование (спутник Sentinel-2)

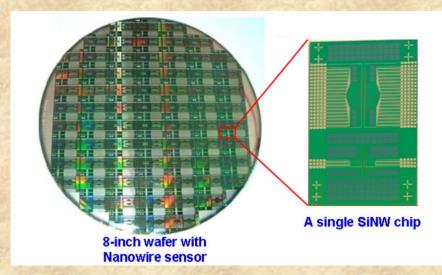
Распределение гусениц по деревьям в насаждении

Сезонная динамика повреждения насаждения сибирским шелкопрядом (Ирбейский район Красноярского края)

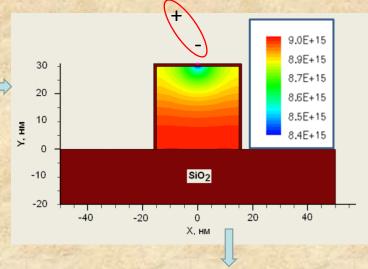
Средняя скорость роста очага: 0.0075 пикселей/сутки.

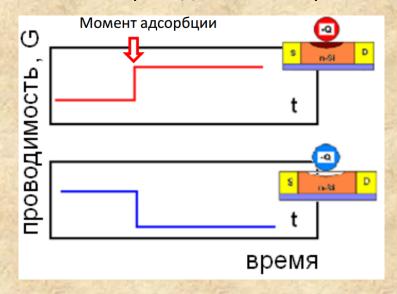

Дистанционные оценки устойчивости насаждений к нападению вредителей

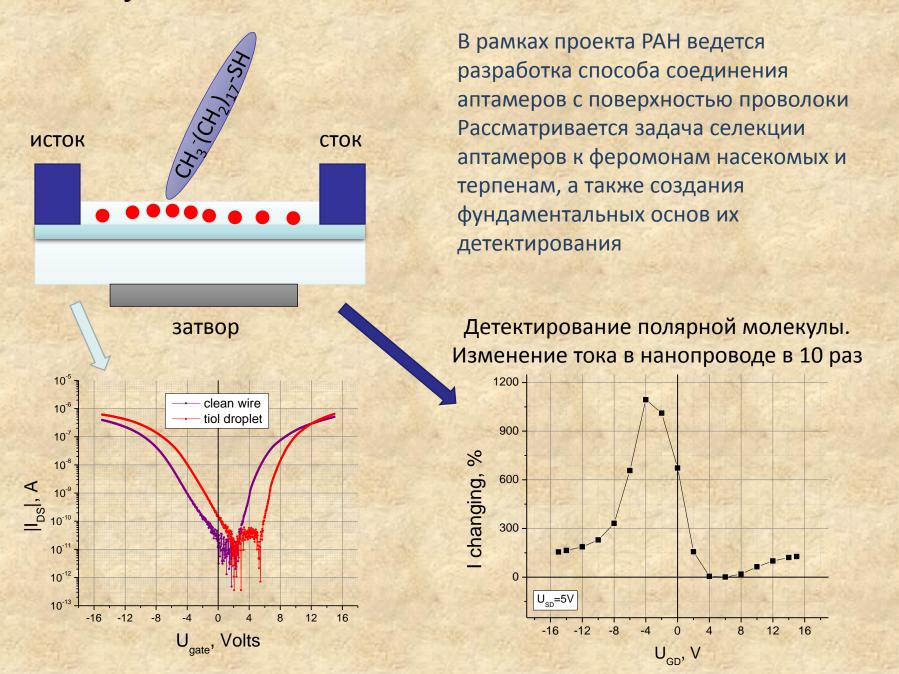
- 1. Использование такого показателя, как NDVI, не позволяет заблаговременно оценить риск нападения насекомых на лесные насаждения
- 2. Используя функцию отклика NDVI на изменение LST, можно оценить участок леса со сниженной энтомо-устойчивостью (доклад А.В.Ковалева)
- 3. Для оценки ранговых распределений концентраций терпенов и феромонов мы предлагаем использовать апта-био-нано-сенсор.

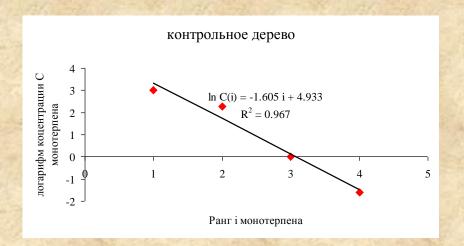

Благодарю за внимание

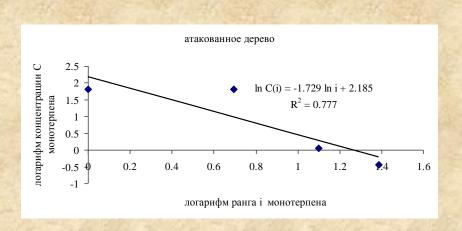
Апта-био-нано-сенсор


Схема нанпроволочного биосенсора

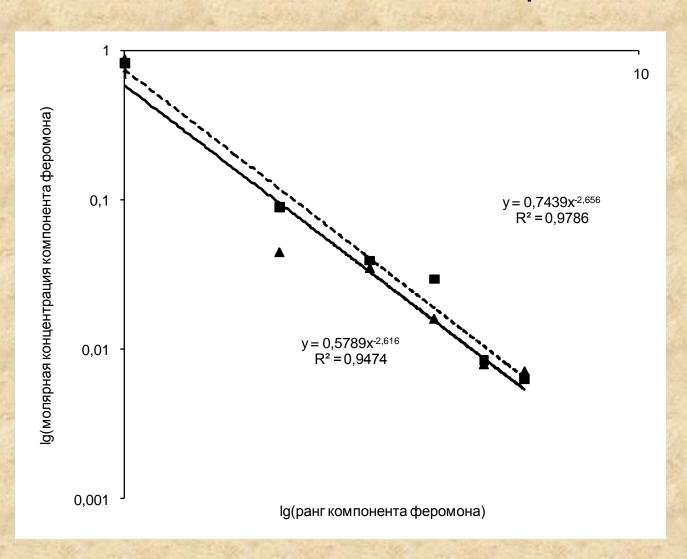

Пример масштабируемой технологии


Принцип действия – модуляция проводимости нанопроволоки при абсорбции заряженной частицы

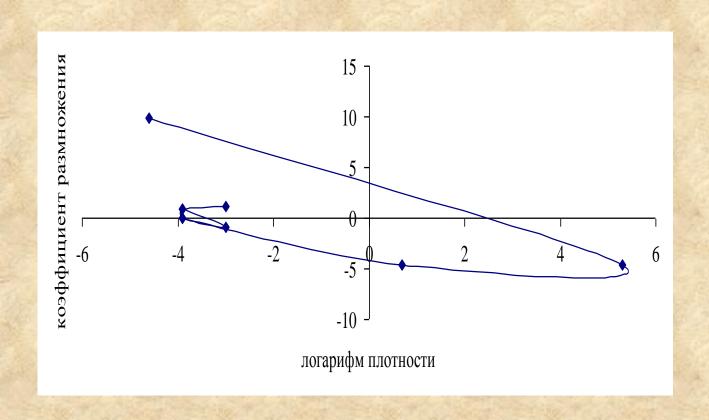

Изменение проводимости от времени



Фундаментальные исследования и задел



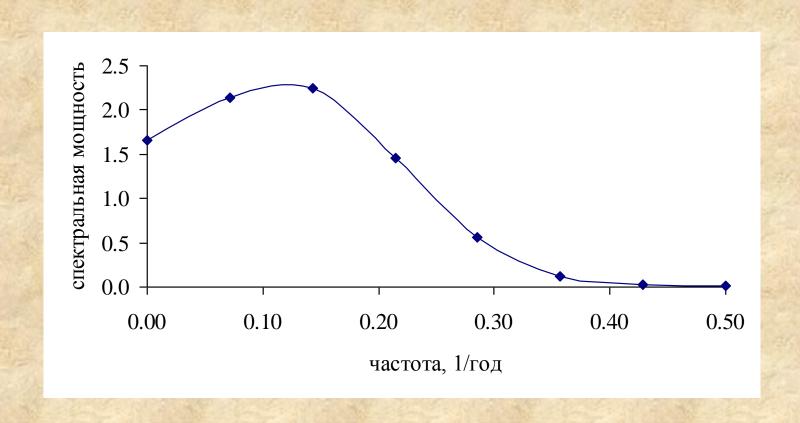
Ранговое распределение монотерпенов у деревьев



Ранговое распределение феромонов: дистанционные измерения

Принятие решений службой защиты леса: нужно ли подавлять любую вспышку массового размножения?

Служба лесозащиты: бюрократическая структура или система «агент-принципал»?


Интерес принципала - собственника: сохранение собственности и получение прибыли

Интерес агента: минимизация риска ошибки при принятии решения

Нужно ли проводить борьбу? Post hoc, ergo propter hoc

Нужны ли агенты второго порядка?

Спектр рядов динамики площадей вспышек массового размножения лесных насекомых

План доклада

- 1. Риски воздействия насекомых
- 2. Популяционная динамика лесных насекомых и вспышки массового размножения
- 3. Необходимые и достаточные условия возникновения вспышек массового размножения
- 4. Принципы мониторинга состояния насаждений и популяций лесных вредителей
- 5. Организационная структура службы защиты леса и эффективность управления рисками вспышек массового размножения